Archive for the ‘Guest Blog’ Category

April 1, 2012.  Piltdown, East Sussex, UK . Two prominent researchers, Drs. Ferdinand I. Charm and June E. Feigen of the University of Piltdown Center for Applied Nutrition (PCAN), submit the following guest review on a ground-breaking area of nutrition.

Nutrition is frequently accused of being a loose kind of science, not defining its terms and speaking imprecisely.  Complex carbohydrates, for example, still refer, in organic chemistry, to polysaccharides such as starches and for many years, it was absolute dogma in nutrition that complex carbohydrates were more slowly absorbed than simple sugars.  Science advances, however, and when measurements were actually made it was found not to be so simple, giving rise to the concept of the glycemic index.  The term “complex,” had since then been used loosely but has currently evolved to have a more precise meaning derived from mathematics, that is, as in complex numbers, having a real part and an imaginary part although the recent Guidelines from the USDA make it difficult to tell which is which.  In any case, the glycemic index has expanded to the concept of a glycemic load and now there is even more hope on the horizon.

Nutrition has borrowed a page from particle physics in the application of quantum chromodynamics. In the way of background, the discovery of the large number of subatomic particles and the need to classify them meant that designations had to go beyond charge and spin to include strangeness and the three flavors of quarks.  Ultimately, it was decided that quarks have an additional degree of freedom, called color and the strong interaction was identified as a color force.  A large amount of evidence supports this idea with interaction via the gluons.

Nutritional Chromodynamics.

A similar idea has arisen in nutrition and it is now clear that the more color, the better and extensive experimental work at CARN is currently under way (Figure 1). The recent CRAYOLA  study showed the value of spectral nutrient density. Support for the theory was summarized in a recent press release:

Blueberries were up there, the wild type being the best.

 “The wild blueberries are blue inside as well as blue outside. The ones we normally eat are sort of white inside. So there are more of the antioxidants in these all-blue blueberries.”

Along the line of color is good, cranberries were close behind as were blackberries.

 But what about vegetables?

 Dried red beans topped the list overall–red kidney and pinto beans were also in the top 10. But surprisingly, so are artichokes. “This is sort of interesting because they are not deeply colored, the inside, the part that we actually consume is white or very pale green but never the less they contain very large amounts of antioxidants.”

 There are nuts that did not make it into the top twenty but did have high enough content worthy of mention– pecans, hazelnuts and walnuts were the ones with the greatest antioxidant content. But the antioxidants are concentrated, so you need only a handful a day to get the amount you need.

 The problem here may be the bland coloration of the nuts. This has been jarring to some theorists, leading many to question whether the Standard Model of nutrition will last, or whether the highly abstract bean-string theory will ultimately prevail.  The recent identification of chocolate with the dark matter that fills the majority of the universe, however, has established the field of nutritional chromodynamics.  Still, critics point to the problem of red meat, one of the very few foods that actually decreased during the epidemic of obesity.  By applying the USDA Nutritional Guidelines, however, this result can be made to vanish.

Figure 1 Souper-Collider at CARN (Centre Alimentaire de Recherche Nucléaire).

Although this is pretty convincing, there is the uncertainty principle.   Because the outcome of a nutritional experiment and its support for the experimenter’s theory rarely commute, it is impossible to simultaneously measure outcome and whether the results mean anything.  Again borrowing from particle physics, there is the concept of the virtual particle that mediates interaction between other particles.  The evolving principle in the field of nutritional chromodynamics is the existence of the  mayon, the virtual particle that mediates the so-called Dietary Weak Interaction or DWI, as in “phytochemicals may prevent cancer.”

And then there is the matter of Quark. Most physicists know that Quark is the German word for sour cream and many physicists on tour in Germany have their picture taken in front of delicatessens selling Quark (at least those who don’t have their picture taken in front of a jewelry store).  Less widely known outside of the German-speaking countries is that Quark colloquially means nonsense or trash.  In any case, it’s pretty clear at this point that, the Tevatron results notwithstanding, blueberries and sour cream are the real Top Quark.